driver.cpp
// A quick driver to test the History Display routine
// It just fabricates a single job history to see what it does
//
#include <iostream>
using namespace std;

#include "scheduler.h"

[bookmark: _GoBack]int main()
{
 Scheduler sched;		 // make a process scheduler
 Process tasks[] = 		 // 3 processes
	{ Process(0), Process(1), Process(2) };	
 int arrival[] = {0, 40, 80}; // arrive at these times

 cout << "First Come First Served" << endl;
 sched.runScheduler(tasks, arrival, 3, 500000);	// FIFO
 displayHistory(tasks, 3, 0, 500);
 cout << endl << "Quanta of 70" << endl;
 sched.runScheduler(tasks, arrival, 3, 70);	// RR generous
 displayHistory(tasks, 3, 0, 500);
 cout << endl << "Quanta of 10" << endl;
 sched.runScheduler(tasks, arrival, 3, 10);	// RR stingy
 displayHistory(tasks, 3, 0, 500);
}

histo.h
#include "process.h"

// History Displayer
// Produces an Ascii-graphic representation of the history for processes
// within a simulation of job scheduling. Each history is recorded as a
// series of time stamps, represented here as integer time values and
// characters representing state.
// Paramaters:
// history input Process array	objects containing linked lists
// 					with the times and states
// 					(see process.h)
// size	input int		number of processes (rows of output)
// start	input int		beginning of time frame of interest
// stop	input int		end of time frame of interest
// Pre-Conditions:
// each linked list concludes with an entry with state 'Q' for completion
// 'start' and 'stop' are both positive integers, with start < stop
// NOTE: 'start' or 'stop' may be outside the time ranges in the history
// Results:
// A display of between 20 and 50 printable characters representing
// the job history within the time range of interest, using the
// characters stored within the given list. Events outside the actual range
// of the job history will be displayed with blanks.
void displayHistory(Process history[], int size, int start, int stop);

histo.cpp
#include <iostream>
#include <iomanip>
using namespace std;

// History Displayer
// Produces an Ascii-graphic representation of the history of a process
// within a simulation of job scheduling. The history is recorded as a
// series of time stamps, represented here as integer time values and
// characters representing state.
// Paramaters:
// state	input char array	what state this job changed to
// times	input int array		when this job changed state
// start	input int		beginning of time frame of interest
// stop	input int		end of time frame of interest
// Pre-Conditions:
// 'state' consists of printable characters, with 'Q' marking end of job
// 'times' consists of increasing positive integers
// the number of meaningful values in both arrays is equal (including 'Q')
// 'start' and 'stop' are both positive integers, with start < stop
// and (stop-start >= 20)
// NOTE: 'start' or 'stop' may have values outside the range in 'times'
// Results:
// A display of between 20 and 50 printable characters representing
// the job history within the time range of interest, using the
// characters stored within 'state'. Events outside the actual range
// of the job history will be displayed with blanks.
void displayHistory(const char state[], const int times[], int start, int stop)
{
 char display[60];			// to hold the output
 int outpos;				// next output position to fill
 int scan;				// next input data item to scan

 char currentState;			// current process state in history
 int time;				// current time examined
 int range = stop - start;		// total time period
 int increment = 1 + range / 40;	// about 40 chars; round upwards

 for (int i=0; i<50; i++)		// clear display
	display[i] = ' ';

 // Identify where to begin recording output data, and
 // what time to begin analyzing at (data may start earlier)
 if (times[0] > start)		// process has not yet started yet
 {
	outpos = (times[0]-start) / increment;	// skip spaces
	time = times[0];			// and start here
 }
 else
 {
	outpos = 0;			// start at beginning of display
	time = start;			// and take measurements here
 }

 // Identify where first applicable data appears
 // (actual may start in the middle of the requested time range)
 scan = 0;				
 while (time <= stop && time >= times[scan+1])
	scan++;
 currentState = state[scan];
 // times[scan] <= time < times[scan+1]
 // currentState represents the process state at this
 // particular instant in time

 // collect relevant data into the output array
 while (time <= stop && currentState != 'Q')
 {
	// currentState (state[scan]) extends from times[scan] to times[scan+1]
	// times[scan] <= time
	// On first repetition, time < times[scan+1], so currentState
	// corresponds to this instant in time (and may be recorded)

	// To avoid excessive "scan+1"s, this will increment right here
	scan++;		

	// currentState extends to times[scan], so record it until
	// that time is reached. First outer loop guarantees an iteration
 while (time <= stop && time < times[scan])
	{
 display[outpos] = currentState;
	 outpos++;			// next output array position
	 time += increment;		// next time instant
	}
	currentState = state[scan];	// next state

process.cpp
#include "process.h"

// Process Constructor
// Initalizes a process as a single burst of CPU usage,
// which may or may not be allowed to run all at once.
// When that CPU time is complete, so is the process.

Process::Process(int id) // a constructor
{
 myId = id;
 bursts = 1; // one big CPU requirement now
 usages[0] = 80 + rand() % 120;
 nextState[0] = 'Q'; // all done!
}

// Run a Process for some time
// The process would like to complete its current CPU burst,
// but is currently only allowed what is granted to it.
// Parameters:
// 	clock		(modified int)	time on simulation clock
// 	allowance	(input int)	time allowed to run with
//	next		(output char)	the process next state after this
//		'Q' = process is complete; 'X' = process wishes to run more
// Post-Condition:
// 	the clock will have advanced until either the allowed time
// 	has been used up, or the current CPU burst is complete
// 	(whichever happens earlier). There will be no idle CPU time.
// Also: The history log for this Process will record what is known
// 	at this time
void Process::run(int &clock, int allowance, char &next)
{

}

process.h
#include "proclist.h"
#include <stdlib.h>

// A description of a process, executed in the process scheduling simulation
class Process
{
 private:
	int myId;		// an identifier for the larger picture

	// A description of the process's total CPU needs
	int bursts;		// total number of CPU bursts (<= 10)
	int usages[10];		// lengths of each burst
	char nextState[10];	// what to do after each burst

	// A desription of what this process is doing now
	int currentCycle;	// which burst is next ro run or continue
	int remainingTime;	// how much time left on current burst

	// A desription of what this process has done so far
	ProcList log;

 public:
 Process(int id);	// the constructor appears in the .cpp

	void restart()		// start at the very beginning
	{
	 currentCycle = 0;
	 remainingTime = usages[0];
	 log.clear();	// empty the log
	}

	void addLog(int time, char state)	// record an event
	{
	 log.pushBack(myId, time, state);
	}

	ProcList &getLog()
	{
	 return log;		// get summarized results at end
	}

	// run for a little while (in .cpp file)
	void run(int &clock, int allowance, char &next);
};

proclist.cpp
#include <iostream>
using namespace std;

// List of Process ProcList Information
// This is a simple linked list, all of whose elements record
// information about a process in a simulated process scheduler.
// This list data structure will be used for three different purposes:
// -- a record of the past history of a particular process
// -- a collection for the job scheduler of processes currently wishing to run
// -- a task list for known future events for the simulation

#include "proclist.h"

// First, some helper functions to display the data

ostream &operator<<(ostream &stream, ProcListElement &ele)
{
 stream << "(" << ele.procID << "," << ele.state << ","
	 << ele.time << ")";
 return stream;
}

ostream &operator<<(ostream &stream, ProcList &hist)
{
 for (ProcListElement *curr = hist.head; curr != NULL; curr = curr->next)
	stream << *curr;
 stream << endl;
 return stream;
}

// And some functionality for the list itself.
// First some easy iterator definitions:
ProcIterator ProcList::begin()
{
 return ProcIterator(this, head);
}

ProcIterator ProcList::end()
{
 return ProcIterator(this, NULL);
}

// push a new element to the back end of the list
// Primarily used for First-In, First-Out ordering
void ProcList::pushBack(int procId, int time, char state)
{
 ProcListElement *newEle = new ProcListElement(procId, time, state);

}

// remove the element at the front end of the list
// Two reference parameters are provided to hold onto information
// from the removed element. The time index is considered unnecessary.
void ProcList::popFront(int &procId, char &state)
{

}

// adds a new element into a sorted linked list
// which is sorted in increasing order according to the 'time' argument
void ProcList::insert(int procId, int time, char state)
{
 ProcListElement *newEle = new ProcListElement(procId, time, state);

}

proclist.h
#include <iostream>
using namespace std;

#ifndef PROCLIST
#define PROCLIST

// List of Process History Information
// This is a simple linked list, all of whose elements record
// information about a process in a simulated process scheduler.
// This list data structure will be used for three different purposes:
// -- a record of the past history of a particular process
// -- a collection for the job scheduler of processes currently wishing to run
// -- a task list for known future events for the simulation
//
class ProcIterator;		// forward type declarations
class ProcList;			// since they all interact

class ProcListElement
{
 friend class ProcList;	// these elements only used by ProcList
 friend class ProcIterator;	// its iterator, and an output function
 friend ostream& operator<<(ostream &, ProcListElement &);
 friend ostream& operator<<(ostream &, ProcList &);

 private:
	int procID;		// process this applies to
	int time;		// time stamp for event
	char state;		// process state at that time
	ProcListElement *next;	// linked list link
	ProcListElement(int i, int t, char s) :
	 procID(i), time(t), state(s), next(NULL) { }
};

class ProcList
{
 friend class ProcIterator;
 friend ostream& operator<<(ostream &, ProcList &);
 private:
	ProcListElement *head, *tail;	// endpoints of list

 public:
	ProcList() : head(NULL), tail(NULL) { }
	~ProcList()		// destructor
	{
	 clear();	
	}
		
	bool empty()		// identify whether list is empty
	{
	 return head == NULL;
	}
	int leadTime()		// identify time of first event in list
	{
	 return head->time;
	}
	int tailTime()		// identify time of last event in list
	{
	 return tail->time;
	}
 void clear()		// erase the list
	{
	 int i; char c;	// just placeholders
	 while (head != NULL)
		popFront(i, c);
	}
	ProcIterator begin();
	ProcIterator end();

	void pushBack(int, int, char);	// add new element to end
	void insert(int, int, char);		// add element in time order
	void popFront(int&, char&);		// remove element from front

	void condense();		// EXTRA CREDIT function //
};

// and an iterator to help visit all the data
class ProcIterator
{
 friend class ProcList;	// List can create Iterators
 private:
	ProcList *list;			// which list are we visiting?
	ProcListElement *current;	// which element now?
 ProcIterator(ProcList *l, ProcListElement *e) :
		list(l), current(e) { }

 public:
	bool operator!=(ProcIterator other)	// to compare to end()
	{
	 return list != other.list || current != other.current;
	}
	int process() const	{ return current->procID; };
	int time() const	{ return current->time;	};
	char state() const	{ return current->state; };
	void advance()		{ current = current->next; }
};

#endif

scheduler.cpp
#include "scheduler.h"

// Scheduler Simulation
// Simulates a process scheduler for a collecdtion of tasks
// Parameters:
// 	tasks		(modified process array)description of tasks to run
// 	arrival		(input int array)	arrival in simulation time
// 	size		(input int)		number of elements in arrays
// 	allowance	(input int)		maximal CPU allowance
//		(a large 'allowance' simulates First Come First Served)
// Each Process includes a history of its activity which is
// pupulated during the simulation and displayed afterwards.
//
// The scheduler includes a readySet of processes that are currently
// wishing to use the CPU, and a future list of events that will
// occur later in the simulation. A simulation clock advances to
// identify which events occur in which order.
void Scheduler::runScheduler(Process tasks[], int arrival[], int size, int allowance)
{
 int pid;			// process wanting action
 char nextAct;		// and the action it wants

 for (int i=0; i < size; i++)
 {
	future.insert(i, arrival[i], 'X');	// all want to run
	tasks[i].restart();			// and start at beginning
	tasks[i].addLog(arrival[i], '-');	// might have to wait
 }

 clock = 0;			// initialize simulation clock
 // repeat while anything is ready to run now or later
 while (!noneReady() || !future.empty())
 {

 }
}

scheduler.h
#include <iostream>
using namespace std;

#include "histo.h"

// Process Scheduler
// This represents the part of an operating system that manages processes,
// choosing which to assign the CPU (assuming a single-processor system).
// It will maintain a collection of processes that are currently ready
// to use the CPU, and then choose which to run next.
//
// The time on the system clock is not required for this object,
// so all of the time fields in the linked list objects are set to zero.

class Scheduler
{
 private:
	ProcList readySet;	// set of processes ready to run
	ProcList future;	// list of future events
	int clock;		// current clock time for simulation
 public:
	void addProcess(int procId)
	{
	 readySet.pushBack(procId, 0, 'X');
	}
	void chooseProcess(int &procId)
	{
	 char hold;
	 readySet.popFront(procId, hold);
	}
	bool noneReady()
	{
	 return readySet.empty();
	}
 void runScheduler(Process[], int[], int, int);
};

